2. 1,11-Cyclic Analogs

RIKA OBATA, TOSHIAKI SUNAZUKA, YUMIKO KATO, HIROSHI TOMODA, YOSHIHIRO HARIGAYA and SATOSHI ŌMURA*

Research Center for Biological Function, The Kitasato Institute and School of Pharmaceutical Sciences, The Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108, Japan

(Received for publication May 2, 1996)

A series of 1,11-cyclic analogs of pyripyropene A were prepared. Replacement of the 1,11-acyl groups of pyripyropenes with 1,11-cyclic acetals effectively improved *in vitro* acyl CoA: cholesterol acyltransferase (ACAT) inhibitory activity. Especially noteworthy is benzylidene acetal analog **35**, the most potent inhibitor ($IC_{50} = 5.6 \text{ nM}$) among the derivatives prepared so far, which showed 16 times more potent inhibitory activity than pyripyropene A.

Pyripyropenes were isolated from a culture broth of *Aspergillus fumigatus* as potent and bioavailable acyl CoA: cholesterol acyltransferase (ACAT) inhibitors¹⁾. In the preceding paper we modified the four possible hydroxy groups in pyripyropene A (1) and showed structure-activity relationships^{2,3)}. In this paper, we describe the synthesis and structure-activity relationships of 1,11-cyclic analogs of 1.

Chemistry

The synthetic method for preparing 1,11-cyclic analogs is illustrated in Scheme 1. Trideacetyl pyripyropene A (2), which was obtained from 1 by hydrolysis, was acetalized with various aldehydes, ketones, dialkyl

acetals, *etc.*, in the presence of catalytic acid such as pyridinium hydrochloride or pyridinium *p*-toluenesulphoate in dimethylformamide at room temperature to afford 1,11-cyclic acetal analogs $3 \sim 21$. Reaction conditions and spectral data (MS, IR) of compounds $3 \sim 21$ are shown in Table 1. Prolonged reaction time or use of a strong acid catalyst such as hydrochloric acid caused elimination of the 13-hydroxyl group to form the 5, (13)-olefin derivative 23. Cyclic carbonate 22 was obtained by refluxing 2 with *N*,*N*-carbonyldiimidazole in tetrahydrofuran⁴.

The acylation of the 7-hydroxyl group of cyclic derivatives $3 \sim 23$ was carried out with acetic anhydride or *n*-valeric anhydride in the presence of triethylamine

Compound	Reagents		Yield	ME	MS (FAB (+))	IR
	Reagent	cat. (%) Found	Found	Calcd	$(KBr)cm^{-1}$		
3	1,1-Dimethoxyethane	Α	27	C ₂₇ H ₃₃ O ₇ N	484.2343 (M+H)	484.2335	1680, 1580
4	Isopropenylmethyl ether	A	64	$C_{28}H_{35}O_7N$	498.2486 (M+H)	498.2491	1700, 1640
5	Propionaldehyde	В	39	$C_{28}H_{35}O_7N$	498.2488 (M+H)	498.2491	1700, 1580
6	Acrolein diethyl acetal	В	32	$C_{28}H_{33}O_7N$	496.2346 (M+H)	496.2335	1700, 1580
7	Isobutylaldehyde	В	35	C ₂₉ H ₃₇ O ₇ N	512.2650 (M+H)	512.2648	1700, 1580
8	Trimethylacetaldehyde	В	17	C ₃₀ H ₃₉ O ₇ N	526.2808 (M + H)	526.2804	1700, 1580
9	1,1,1-Trimethoxymethane	Α	21	C ₂₇ H ₃₃ O ₈ N	500.2310 (M+H)	500.2284	1710, 1570
10	Benzaldehyde dimethylacetal	В	83	C ₃₂ H ₃₅ O ₇ N	546.2500 (M+H)	546.2491	1700, 1580
11	(1,1-Dimethoxyethyl)benzene	В	85	$C_{33}H_{37}O_7N$	560.2636 (M + H)	560.2648	1700, 1580
12	o-Tolaldehyde	Α	49	C ₃₃ H ₃₇ O ₇ N	560.2656 (M+H)	560.2648	1700, 1580
13	<i>m</i> -Tolaldehyde	В	39	C ₃₃ H ₃₇ O ₇ N	560.2665 (M + H)	560.2648	1700
14	p-Tolaldehyde	Α	18	C ₃₃ H ₃₇ O ₇ N	560.2616 (M + H)	560.2648	1700
15	o-F-Benzaldehyde	A	19	C ₃₂ H ₃₄ O ₇ NF	564.2427 (M + H)	564.2397	1700
16	m-F-Benzaldehyde	В	13	C ₃₂ H ₃₄ O ₇ NF	564.2447 (M+H)	564.2397	1700, 1580
17	p-F-Benzaldehyde	B	12	C ₃₂ H ₃₄ O ₇ NF	560.2386 (M + H)	564.2397	1700
18	<i>p</i> -Methoxybenzaldehyde	Α	88	C33H37O8N	576.2591 (M + H)	576.2597	1700
19	p-Nitrobenzaldehyde	С	4	$C_{32}H_{34}O_9N_2$	591.2330 (M + H)	591.2342	1700, 1520
20	Cyclopentanone	С	20	$C_{30}H_{37}O_7N$	524.2681 (M+H)	524.2648	1700
21	1,1-Dimethoxycyclohexane	В	63	$C_{31}H_{39}O_7N$	538.2805 (M+H)	538.2804	1700

Table 1. Reagents, yield, MS and IR data for $3 \sim 21$.

A: Pyridinium hydrochloride, B: pyridinium p-toluenesulfonate, C: p-toluenesulfonic acid.

Table	2.	Yield,	MS	and	IR	data	for	$24 \sim 46$

Compound	Yield	ME		MS		IR
Compound	(%)	1411		Found	Calcd	$(KBr) cm^{-1}$
24	100	C ₃₃ H ₄₁ O ₇ N	EI (+)	563.2892 (M+)	563.2883	1740
25	61	C ₃₀ H ₃₇ O ₈ N	FAB(+)	540.2616 (M+H)	540.2597	1710, 1250
26	57	C ₃₄ H ₃₃ O ₈ N	FAB(+)	588.2615 (M+H)	588.2597	1700, 1580
27	83	$C_{33}H_{43}O_8N$	FAB(+)	582.3062 (M+H)	582.3066	1730, 1700
28	88	$C_{37}H_{43}O_8N$	FAB(+)	630.3089 (M+H)	630.3066	1730, 1710
29	65	$C_{32}H_{41}O_8N$	FAB(+)	568.2905 (M+H)	568.2910	1730
30	96	$C_{38}H_{45}O_8N$	FAB(+)	644.3218 (M + H)	644.3223	1700, 1740
31	77	C ₃₆ H ₄₇ O ₈ N	FAB(+)	622.3370 (M+H)	622.3379	1700
32	54	$C_{35}H_{45}O_8N$	FAB(+)	630.3059 (M + Na)	630.3042	1710
33	9	$C_{31}H_{37}O_9N$	FAB(+)	568.2560 (M+H)	568.2546	1740
34	66	$C_{33}H_{43}O_8N$	FAB(+)	582.3071 (M + H)	582.3066	1740, 1710
35	63	$C_{33}H_{41}O_8N$	FAB(+)	580.2913 (M+H)	580.2921	1720
36	57	$C_{34}H_{45}O_8N$	FAB(+)	596.3218 (M + H)	596.3223	1740, 1720
37	60	$C_{35}H_{47}O_8N$	FAB(+)	610.3370 (M+H)	610.3380	1740, 1700
38	58	$C_{32}H_{41}O_{9}N$	FAB(+)	584.2847 (M + H)	584.2860	1740, 1700
39	71	$C_{38}H_{45}O_8N$	FAB(+)	644.3160 (M+H)	644.3223	1730, 1720
40	52	$C_{38}H_{45}O_8N$	FAB(+)	644.3194 (M+H)	644.3223	1720
41	64	C ₃₈ H ₄₅ O ₈ N	FAB(+)	644.3170 (M + H)	644.3223	1700
42	40	C ₃₇ H ₄₂ O ₈ NF	FAB(+)	648.2976 (M+H)	648.2972	1720
43	40	C ₃₇ H ₄₂ O ₈ NF	FAB(+)	648.3026 (M+H)	648.2972	1730, 1710
44	50	C ₃₇ H ₄₂ O ₈ NF	FAB(+)	648.2932 (M+H)	648.2972	1740
45	95	C ₃₈ H ₄₅ O ₉ N	FAB(+)	660.3180 (M + H)	660.3172	1720
46	51	$C_{37}H_{42}O_{10}N_2$	FAB (+)	675.2945 (M+H)	675.2917	1710

(Et₃N) and 4-dimethylaminopyridine (DMAP) as base in dry dichloromethane (CH₂Cl₂) to give compounds $24 \sim 46$. Yield and spectral data (MS, IR) for compounds $24 \sim 46$ are shown in Table 2. treatment with 60% aq. acetic acid⁵⁾ yields compounds **47** and **48**, respectively.

¹H NMR data for compounds $3 \sim 47$ are shown in Table 3.

Cleavage of isopropylidene derivatives 25 and 27 by

There are two possible conformations for 6-membered

	3	4	5	6	7
2''	8.99 (d, 1.7)	9.00 (d, 2.0)	8.99 (d, 1.7)	8.99 (d, 1.7)	8.98 (s)
6''	8.68 (dd, 1.7, 4.6)	8.70 (dd, 1.4, 4.3)	8.68 (dd, 1.5, 4.8)	8.68 (dd. 1.7, 5.0)	8.66 (d. 4.0)
4″	8.09 (dt, 2.0, 7.9)	8.11 (dd. 2.0, 6.9)	8.10 (dt. 2.0, 8.6)	8.10 (dt. 2.0, 8.6)	8.10 (dd. 1.7. 7.1)
5″	7.41 (dd. 4.8, 8.1)	7.42 (dd. 5.1, 7.8)	741 (dd 46 79)	741 (dd 5376)	7.43 (dd, 50, 7.9)
5'	6 49 (s)	6 51 (s)	6 50 (s)	6.50 (s)	6 52 (s)
13	4.97 (d. 4.0)	4.99 (4.2.6)	4 98 (d. 3 0)	4.99 (a)	0.52 (3) 4.06 (4.4.0)
7	3.77 (m)	4.99 (u, 2.0)	4.90 (u, 5.0)	4.99 (8)	4.90 (d, 4.0)
7	2.25 (m)	3.81 (III) 2.25 (m)	3.79 (m)	3.82 (m)	3.79 (m)
1	5.25 (III)	3.25 (m)	3.23 (m)	3.33 (m)	3.19 (m)
11	3.76 (d, 10.2)	3.54 (d, 7.6)	3.78 (d, 10.2)	3.83 (d, 10.2)	3.76 (d, 10.2)
	3.23 (d, 9.9)	3.44 (d, 10.9)	3.22 (d, 9.6)	3.29 (d, 9.6)	3.18 (d, 9.9)
14-Me	1.64 (s)	1.64 (s)	1.64 (s)	1.64 (s)	1.63 (s)
12-Me	1.41 (s)	1.59 (s)	1.41 (s)	1.41 (s)	1.39 (s)
15-Me	1.13 (s)	1.11 (s)	1.11 (s)	1.15 (s)	1.08 (s)
R-CH<	4.72 (q, 4.9)	·	4.51 (t, 4.9)	4.99 (m)	4.29 (d, 4.6)
	Me: 1.35 (3H, d, 4.9)	Me: 1.44 (3H, s), Me: 1.41 (3H, s)	CH ₃ CH ₂ : 1.64 (2H, m), CH ₃ CH ₂ : 0.95 (3H, t, 7.4)	$\begin{array}{l} {\rm CH}_2 = {\rm C}H -: \ 5.90 \\ (1{\rm H}, \ {\rm d}{\rm d}{\rm d}, \ 5.0, \ 10.6, \\ 17.2), \ {\rm C}H_2 = {\rm C}{\rm H} -: \\ 5.47 \ (1{\rm H}, \ {\rm d}, \ 17.5), \\ 5.32 \ (1{\rm H}, \ {\rm d}, \ 10.6) \end{array}$	Me ₂ CH: 2.92 (1H, m), Me ₂ CH: 0.93 (6H, c 6.9)
	8	9	10	11	12
2"	8.99 (s)	9.01 (d, 1.7)	9.01 (d, 2.3)	9.00 (s)	9.03 (br s)
6″	8.68 (d. 4.0)	8.70 (dd. 1.5, 4.8)	8.69 (dd. 1.5, 4.9)	8.67 (s)	8.71 (br s)
4''	8.10 (dt. 2.0, 8.6)	8.11 (dt. 2.0. 7.6)	8.11 (dt. 2.0, 7.9)	8.10 (dd. 1.5. 7.5)	8.13 (d. 7.9)
5″	741 (dd 4581)	743 (dd 48 83)	7.42 (m)	7.41 (m)	7 44 (s)
5'	6 50 (s)	6 51 (s)	6 51 (s)	6 51 (s)	6 52 (s)
13	4 98 (d. 3 0)	4 98 (d 3 3)	4.99(d, 2.3)	5.00 (d 4.3)	4.99(d, 4.0)
7	4.98 (u, 5.0)	4.98 (u, 5.5)	4.99 (u, 2.3)	3.00 (u, 4.5)	(u, 4.0)
1	2.18 (m)	3.80 (m)	3.82 (m)	3.80 (III)	2.46 (m)
11	2.78(11)	5.54 (III) 2.82 (J 10.6)	2.05 (4.10.2)	3.78 (III) 3.72 (J. 10.6)	3.40 (m)
11	3.78 (d, 10.2)	3.82 (d, 10.6)	3.95 (d, 10.2)	3.72 (d, 10.6)	3.94 (d, 10.2)
	3.17 (d, 10.6)	3.36 (d, 10.6)	3.45 (d, 10.6)	3.65 (d, 10.9)	3.46 (m)
14-Me	1.64 (s)	1.65 (s)	1.61 (s)	1.65 (s)	1.66 (s)
12-Me	1.40 (s)	1.42 (s)	1.45 (s)	1.41 (s)	1.45 (s)
15-Me	1.07 (s)	1.17 (s)	1.26 (s)	1.10 (s)	1.26 (s)
R-CH<	4.13 (s)	5.23 (s)	5.54 (s)		5.50 (s)
	Me ₃ : 0.91 (9H, s)	OMe: 3.52 (3H, s)	C ₆ H ₅ : 7.50 (2H, m), 7.36 (3H, m)	C ₆ H ₅ : 7.58 (2H, dd, 1.5, 8.1), 7.33 (3H, m), Me: 1.71 (3H, s)	C ₆ H ₄ : 7.14~7.32 (4H, com.), Me: 2.32 (3H, s)
	13	14	15	16	17
2"	9.06 (br s)	9.02 (s)	9.07 (s)	9.02 (s)	9.08 (s)
6″	8.71 (br s)	8.71 (s)	8.71 (s)	8.70 (s)	8.73 (s)
4''	8.18 (brs)	8.14 (d, 8.2)	8.18 (d, 7.9)	8.13 (d, 8.2)	8.12 (dd, 5.3, 8.6)
5″	7.50 (s)	7.44 (m)	7.49 (m)	7.43 (dd. 4.8, 8.2)	7.48 (m)
5'	6.55 (s)	6.53 (s)	6.56 (s)	6.52 (s)	6.57 (s)
13	5.00 (d 4 0)	5.00 (d. 4.3)	5.00 (d. 4.0)	5.00 (d. 4.3)	5.00 (d. 3.6)
7	3.83 (dd 6.6.9.9)	3 83 (dd 69 99)	3 83 (dd 6 4 9 9)	3 83 (dd 6 3 10 2)	3 84 (dd 62 8 9)
, 1	3.48 (m)	3.45 (m)	3.09 (m)	3.09 (m)	3.66 (m)
11 .	3.96 (d. 10.2)	3.03 (d. 10.0)	3.04 (d. 10.2)	3.04 (d 10.7)	3.94 (d. 10.5)
11/	2.90 (u, 10.2)	3.55 (u, 10.2)	3.97 (u, 10.2)	3.97 (u, 10.2)	3.6 (m)
11 14 M.C	5.40 (III) 1.66 (a)	5.45 (III) 1.66 (a)	5.47 (III) 1.66 (a)	5.49 (III) 1.66 (a)	5.40 (III) 1.66 (a)
14-1VIC	1.00 (S) 1.44 (c)	1.00 (8)	1.00 (8)	1.00 (8)	1.00 (8)
12-Me	1.44 (S)	1.44 (8)	1.45 (8)	1.45 (S)	1.45 (8)
ID-Me	1.25 (s)	1.25 (s)	1.27 (s)	1.24 (s)	1.24 (S)
R-CH	5.68 (s)	5.50 (s)	5.86 (s)	5.52 (s)	5.52 (8)
	C ₆ H ₄ : 7.63 (1H, d,	C ₆ H ₄ : 7.38 (2H, d,	C ₆ H ₄ : 7.66 (1H, dt,	C_6H_4 : 7.21 ~ 7.35	C ₆ H ₄ : 8.20 (1H, d,
	4.9), 7.12~7.24	7.9), 7.17 (2H, d,	1.7, 7.3), 7.32 (1H,	(3H, com.), 7.04	7.9), 7.48 (1H, m),
	(3H, com.),	7.9) ,Me: 2.34	m), 7.19 (1H, m),	(1H, dt, 1.3, 7.3)	7.10 (2H, dt, 8.6,
	Me: 2.35 (3H, s)	(3H, s)	7.03 (1H, dd, 8.2, 10.2)		14.4)

Table 3-1. ¹H NMR data for $3 \sim 17$.

	18	19	20	21	22
2″	8.99 (s)	9.15 (br s)	9.05 (br s)	8.98 (d, 2.0)	8.98 (d, 1.7)
6''	8.67 (d, 4.0)	8.74 (brs)	8.71 (br s)	8.67 (dd, 1.5, 4.8)	8.68 (dd, 1.7, 4.6)
4″	8.09 (dt, 2.0, 8.3)	8.30 (d, 7.9)	8.20 (d, 8.3)	8.10 (dt 2.0, 8.9)	8.09 (dt, 2.0, 8.3)
5″	7.40 (m)	7.59 (m)	7.51 (m)	7.41 (dd. 5.0, 7.9)	7.40 (dd, 4.8, 8.1)
5'	6.49 (s)	6.64 (s)	6.54 (s)	6.50 (s)	6.49 (s)
13	4.98 (d. 4.0)	5.00 (d. 4.0)	4.98 (d. 4.0)	4.97 (d. 4.0)	4.96 (d. 4.3)
7	3.82 (m)	3.83 (m)	3.81 (m)	3 78 (m)	4.05 (m)
1	3.44 (m)	349(m)	3.37 (m)	3.55 (m)	3.82 (dd 51 116)
11	3.91 (d. 10.6)	3.97 (d 10.5)	3.58 (d. 10.5)	3.52 (d. 10.0)	4 17 (d. 9.9)
11/	3.91 (d, 10.6)	3.97 (u, 10.5)	3.38 (u, 10.3)	2.44 (d 10.9)	4.17 (0, 3.3)
14 Mo	1.71 (c)	1.49 (m)	3.57 (m)	1.64 (a)	4.01 (0, 9.2)
14-Me	1.71(8)	1.00(s)	1.04 (S)	1.04 (8)	1.00 (S)
12-Me	1.47 (8)	1.45 (s)	1.41 (S)	1.40 (s)	1.45 (s)
15-Me	1.13 (s)	1.23 (s)	1.13 (8)	1.10 (s)	1.13 (s)
R-CH<	5.47 (s)	5.61 (s)			
	C ₆ H ₄ : 7.41 (2H, d,	C ₆ H ₄ : 7.69 (2H, d,		1.8 (2H, m), 1.5 (6H,	
	8.6), 6.88 (2H, d,	8.9), 8.30 (2H, d,		m), 1.4 (2H, m)	
	8.9), OMe: 3.78	8.9)			
	(3H, s)				
	23	24	25	26	27
2"	8.99 (s)	8.99 (d, 1.7)	9.00 (d, 2.0)	9.02 (d, 2.0)	9.00 (d, 2.0)
6''	8.66 (d, 3.6)	8.66 (dd, 1.5, 4.8)	8.68 (dd, 1.5, 4.8)	8.69 (dd, 1.7, 5.3)	8.69 (dd, 1.7, 4.5)
4″	8.11 (dt, 2.0, 8.3)	8.10 (dt, 2.0, 8.2)	8.09 (dt, 2.0, 7.9)	8.11 (dt, 2.0, 8.3)	8.09 (dt, 2.0, 8.3)
5″	7.40 (dd, 5.0, 7.9)	7.39 (dd, 4.8, 8.2)	7.39 (dd, 4.8, 8.1)	7.41 (dd, 5.6, 8.9)	7.40 (dd, 4.8, 8.1)
5'	6.53 (s)	6.45 (s)	6.52 (s)	6.47 (s)	6.40 (s)
13	6.28 (s)	6.31 (s)	4.99 (s)	5.01 (d. 4.6)	4.99 (d. 4.6)
7	4.09 (t. 8.4)	5.24 (m)	4 99 (m)	5.03 (m)	5.01 (m)
1	3 48 (m)	3.51 (dd 5.1 11.4)	3.53 (dd 3.8 11.7)	3.51 (m)	3.54 (dd 3.8 11.7)
11	3.56 (d. 10.6)	3.49 (s)	3.55 (dd, 5.0 , 11.7)	3.88 (d. 10.6)	3.04 (au, 5.0, 11,7)
11/	3.45 (d, 10.0)	3 40 (s)	3.47(s)	3.60 (d, 10.0)	2.48(3)
14 Ma	1.63 (c)	J.49 (3)	3.47(3)	1.71 (a)	J.40 (S)
14-1VIC	1.03 (8)	1.30(8)	1.00 (8)	1.71 (s)	1.68 (S)
12-IVIE	1.53 (8)	1.43 (s)	1.43 (s)	1.47 (s)	1.44 (s)
15-Me	1.09 (8)	1.07 (s)	1.09 (s)	1.25 (s)	1.10 (s)
R-CH	 : 			5.54 (s)	
	Me ₂ : 1.43 (6H, s)	Me ₂ : 1.43 (6H, s),	Me ₂ : 1.42 (6H, s),	$C_6H_5: 7.3 \sim 7.5$	Me ₂ : 1.43 (6H, s),
		CH ₃ (CH ₂) ₃ : 0.97	Ac: 2.16 (3H, s)	(5H, m), Ac: 2.19	CH ₃ (CH ₂) ₃ : 0.9
		(3H, t, 7.3), 2.42		(3H, s)	(3H, t, 7.3), 2.45
		(2H, dt, 1.3, 7.3)			(2H, dt, 1.1, 7.3)
	28	29	30	31	32
2''	9.00 (d, 2.0)	8.99 (d, 2.0)	9.02 (br s)	9.00 (s)	9.04 (br s)
6''	8.69 (dd, 1.7, 4.6)	8.68 (dd, 1.5, 4.8)	8.72 (br s)	8.68 (s)	8.71 (brs)
4''	8.10 (dt, 2.0, 8.6)	8.08 (dt, 2.0, 8.3)	8.29 (d, 8.3)	8.11 (dt. 1.9. 8.3)	8,20 (d. 8.3)
5″	7.42 (m)	7.40 (dd, 5.0, 7.9)	7.34 (m)	7.42 (dd. 5.1. 8.1)	7.53(m)
5'	6.42 (s)	6.39 (s)	6.47 (s)	6.40 (s)	6.54 (s)
13	5.01 (d. 4.0)	4.97 (d. 50)	5.02 (s)	4.98 (d 4 0)	4.99 (d 4.0)
7	5.04 (dd 5.9 11.2)	5 00 (dd 5 9 11 2)	5.05 (m)	4 99 (m)	503 (m)
1	3.50 (m)	3.26 (m)	3.05 (m)	3 57 (dd 2 8 11 7)	3.03 (m)
11	3.80 (d. 10.6)	3.60 (d. 10.6)	2.67 (n)	3.57 (uu, 3.6, 11.7)	3.34 (III) 3.53 (J. 10.5)
11/	3.07 (0, 10.0)	2.05 (d, 10.0)	2.67 (s)	3.30 (u, 10.9)	3.32 (u, 10.3)
11 14 N.4	5.49 (0, 10.2)	3.20 (a, 9.2)	5.07 (S)	5.44 (a, 10.6)	5.34 (m)
14-1VIC	1.70 (8)	1.07 (S)	1./U (S)	1.0/(S)	1.68 (s)
12-Me	1.4/ (S)	1.45 (S)	1.42 (s)	1.42 (s)	1.43 (s)
15-Me	1.25 (s)	1.11 (s)	1.10 (s)	1.10 (s)	1.12 (s)
R-CH<	5.54 (s)	4.72 (q, 5.0)			
	C ₆ H ₅ : 7.3~7.5 (5H,	Me: 1.34 (3H, d, 5.0),	C_6H_5 : 7.3 ~ 7.6 (5H,	1.8 (2H, m), 1.5 (6H,	CH ₃ (CH ₂) ₃ : 0.97
	m), CH ₃ (CH ₂) ₃ :	CH ₃ (CH ₂) ₃ : 0.96	m), Me: 1.72 (3H,	m), 1.4 (2H, m),	(3H, t, 7.3), 2.42
	0.98 (3H, t, 7.3),	(3H, t, 7.3), 2.42	s), CH ₃ (CH ₂) ₃ :	CH ₃ (CH ₂) ₃ : 0.97	(2H, dt, 2, 7.6)
	2.44 (2H, dt, 2, 7.3)	(2H, dt, 2.0, 7.6)	0.97 (3H, t, 7.3),	(3H, t, 7.3), 2.42	
			244(2H m)	(2H dt 2 7 3)	

Table 3-2. ¹H NMR data for $18 \sim 32$.

	33	34	35	36	37
2"	9.00 (d, 2.3)	9.00 (s)	9.00 (s)	9.00 (d, 2.0)	9.04 (s)
6''	8.70 (dd, 1.5, 6.3)	8,68 (dd, 1.5, 4.8)	8.69 (d, 4.0)	8.68 (dd, 1.3, 5.9)	8.72 (s)
4''	8.09 (dd, 2.0, 8.3)	8.11 (dt, 2.0, 8.3)	8.13 (dt, 2.0, 8.3)	8.11 (dd, 2.0, 8.3)	8.18 (d, 7.9)
5"	7.41 (dd, 4.8, 8.1)	7.40 (dd, 4.8, 8.1)	7.44 (dd, 5.0, 7.9)	7.43 (dd, 4.8, 7.8)	7.50 (brs)
5'	6.41 (s)	6.40 (s)	6.41 (s)	6.40 (s)	6.43 (s)
13	4.98 (d. 4.6)	4.98 (d. 4.0)	4.99 (d. 5.0)	4.98 (d. 3.6)	4.99 (d, 4.0)
7	5.00 (dd. 5.3, 11.6)	5.00 (dd. 5.9, 11.2)	5.00 (m)	5.00 (m)	5.01 (dd. 5.6, 11.5)
1	4 07 (m)	3.24 (m)	3 34 (m)	3.22 (m)	3.20 (m)
11	4.07 (m)	3.71 (d 10.2)	3.76 (d. 10.6)	3.72 (d 10.2)	3.72 (d. 10.2)
11/	4.05 (d. 9.6)	3 25 (d. 9.6)	3 33 (d 10.9)	3.22 (d, 10.6)	3.72 (d, 10.2)
14 Ma	4.05 (d, 9.0)	1.67 (c)	1.68 (a)	1.67 (s)	1.68 (c)
14-IVIC	1.71(8)	1.07(s)	1.00 (8)	1.07 (s)	1.00 (3) 1.43 (c)
12-IVIC	1.47(8)	1.43 (8)	1.43(8)	1.42(8)	1.45 (S)
D CIL	1.13 (S)	1.10(s)	1.13(8)	1.08(s)	1.07(s)
R-CH		4.50 (1, 5.0)	4.99 (d, 5.0)	4.30 (d, 4.0)	4.14 (8)
	CH ₃ (CH ₂) ₃ : 1.00	0.95 (3H, t, 7.3),	$CH_2 = CH - 5.89$	Me ₂ CH: 0.94 (6H, d,	Me ₃ : 0.92 (9H, s),
	(3H, t, 7.3), 2.42	0.94 (3H, t, 7.6),	(1H, ddd, 5.0, 10.6,	6.6), CH ₃ (CH ₂) ₃ :	CH ₃ (CH ₂) ₃ : 0.97
	(2H, dt, 2.6, 7.6)	2.42 (2H, dt, 1.8,	17.2), $CH_2 = CH -:$	0.96 (3H, t, 7.3),	(3H, t, 7.3), 2.42
		7.3)	5.48 (1H, d, 17.5),	2.41 (2H, dt, 2.0,	(2H, dt, 1.8, 7.3)
			5.32 (1H, d, 10.6)	7.3)	
	38	39	40	41	42
2"	8.99 (d. 2.7)	9.02 (s)	9.02 (br s)	9.02 (s)	9.04 (br s)
- 6''	8.68 (dd. 2.7.50)	8.70 (s)	8.71 (br s)	8.71 (s)	8.72 (br s)
4''	8.08 (dt 2.0.7.6)	8.17 (dd 17 83)	8.23 (br s)	8.15 (d. 8.3)	8.22 (d. 8.2)
	7.39 (dd 4.7, 7.8)	7.48 (dd, 50, 7.9)	7.52 (brs)	7.48 (dd 3.3 , 7.9)	7.53 (m)
5	6 30 (c)	6 A4 (s)	6.45 (s)	6 43 (s)	6 45 (s)
12	4.07 (d - 4.0)	5.01 (d - 4.0)	5.00 (d. 4.3)	5.01 (d 4.2)	5.00 (d 3.9)
15	4.97 (0, 4.0)	5.01 (0, 4.0)	$5.00(\mathbf{u}, \mathbf{x}, \mathbf{y})$	5.01 (u, +.2)	5.00(0, 5.5)
1	4.99 (dd, 5.0 , 11.2)	2.51 (m)	2.50 (m)	3.04 (m)	3.57 (m)
1	3.35 (III)	3.31 (m)	3.50 (III) 2.88 (4.10 C)	3.40 (III)	3.92 (11)
11	3.75 (d, 10.6)	3.80 (0, 10.0)	3.60 (u, 10.0)	3.67 (u, 10.2)	3.60 (u, 10.0)
11	3.39 (d, 9.9)	3.31 (m)	3.30 (III)	3.48 (III)	3.32 (m)
14-Me	1.68 (s)	1.70 (s)	1.70 (8)	1.70 (8)	1.70 (S)
12-Me	1.43 (s)	1.47 (s)	1.47 (s)	1.46 (s)	1.4/(s)
15-Me	1.14 (s)	1.25 (s)	1.24 (s)	1.24 (s)	1.26 (s)
R-CH<	5.21 (s)	5.68 (s)	5.50 (s)	5.50 (s)	5.96 (s)
	OMe: 3.51 (3H, s),	C_6H_4 : 7.12 ~ 7.24	C ₆ H ₄ : 7.14~7.33	C ₆ H ₄ : 7.17 (2H, d,	C_6H_4 : 7.04 ~ 7.35
	CH ₂ (CH ₂) ₂ : 0.96	(3H, com.), 7.63 (1H	, (4H, com.), Me:	8.3), 7.38 (2H, d,	(3H, com.), 7.65
	(3H, t. 7.3), 2.41	dd. 2.0, 4.6). Me:	2.36 (3H, s),	8.3), Me: 2.34 (3H,	(1H, dt, 1.8, 7.2),
	(2H, dt, 1.6, 7.6)	2.39 (3H. s).	$CH_{2}(CH_{2})_{2}: 0.97$	s), CH ₃ (CH ₂) ₃ ;	CH ₃ (CH ₂) ₃ : 0.97
	(,,,, ,,	CH ₂ (CH ₂) ₂ : 0.97	(3H. t. 7.3), 2.43	0.97 (3H, t, 7.3),	(3H, t, 7.2), 2.43
		(3H + 73) = 2.44	(2H dt 20.76)	2.37 (2H. dt. 2.0.	(2H. dt. 2.0, 7.2)
		(2H, dt, 2, 7.3)	(211, 00, 210, 710)	7.6)	(,,,,
, , , , , , , , , , , , , , , , ,	43		45		47
	9.04 (s)	9.04 (s)	9.00 (s)	9.06 (s)	9.01 (brs)
∠ 6″	8.71 (d. 1.6)	8 71 (s)	8 68 (s)	8.72 (brs)	8.69 (brs)
A''	8.71 (0, 1.0) 8.72 (d, 5.2)	8.22 (m)	8 11 (d. 8 3)	8.72 (brs)	8.09 (m)
+ 5″	7.38 (m)	7.50 (m)	7.42 (m)	7.57 (brs)	7.41 (m)
5 5'	6.44 (e)	6 45 (a)	6 41 (s)	6.46(s)	6 46 (s)
5 12	0.44 (S) 5.00 (J. 4.0)	0.43 (8) 5 00 (d. 2 0)	0.41 (S) 4.00 (d. 4.0)	5.01 (d. 3.2)	4 00 (d A 0)
13	5,00 (d, 4.0)	5.00(a, 5.9)	4.33 (0, 4.0)	5.01 (u, 5.5) 5.04 (d.4, 5.0, 11.6)	5.00 (dd 5 5 11 0)
/	3.03 (ad, 0.0, 11.2)	3.04 (uu, 3.8, 11.3)	3.01 (m)	3.04 (uu, 3.7, 11.0)	3.00 (uu, 3.3, 11.2)
1	5.50 (m)	5.49 (m)	5.47 (III) 2.96 (J. 10 C)	3.33 (III) 2.03 (J. 10.2)	2.65 (d. 10.6)
11	5.88 (d, 10.6)	3.88 (a, 10.2)	5.80 (a, 10.6)	3.92 (0, 10.2)	2.02 (u, 10.0)
11'	3.50 (m)	3.49 (m)	3.40 (a, 10.6)	5.53 (III) 1.70 (-)	5.41 (a, 10.6)
14-Me	1.70 (s)	1.70 (s)	1.69 (S)	1.70 (8)	1.70 (8)
12-Me	1.47 (s)	1.47 (s)	1.46 (s)	1.47 (s)	1.42 (s)
15-Me	1.22 (s)	1.23 (s)	1.22 (s)	1.21 (s)	0.89 (s)
R-CH<	5.53 (s)	5.52 (s)	5.48 (s)	5.61 (s)	
	C ₆ H ₄ : 7.04 (1H, dd,	C ₆ H ₄ : 7.05 (2H, t,	C ₆ H ₄ : 6.88 (2H, d,	C ₆ H ₅ : 7.69 (2H, d,	
	1.3, 7.4), 7.14~7.38	8.6), 7.48 (2H, dd,	8.9), 7.42 (2H, d,	8.9), 8.23 (2H, d,	
	(211 - 22 - 2) 7.52	53 86) Me 234	8.9), CH ₂ (CH ₂) ₂ ;	8.9), CH ₂ (CH ₂) ₂ :	
	(2H, COM.), 7.55	5.5, 6.0), 1410. 2.54	$(2)_3$		
	(2H, COM.), 7.55 (1H, m),	(3H, s),	0.96 (3H, t, 7.4),	0.97 (3H, t, 7.3), 2.4	14
	(2H, COM.), 7.55 $(1H, m), CH_3(CH_2)_3: 0.98$	(3H, s), CH ₃ (CH ₂) ₃ : 0.98	0.96 (3H, t, 7.4), 2.43 (2H, dt, 1.3,	0.97 (3H, t, 7.3), 2.4 (2H, dt, 2.0, 7.6)	14
	(2H, com.), 7.53 (1H, m), $CH_3(CH_2)_3: 0.98$ (3H, t, 7.3), 2.43	(3H, s), (3H, s), $CH_3(CH_2)_3: 0.98$ (3H, t, 7.4), 2.44	0.96 (3H, t, 7.4), 2.43 (2H, dt, 1.3, 7.9)	0.97 (3H, t, 7.3), 2.4 (2H, dt, 2.0, 7.6)	14

Table 3-3. ¹H NMR data for $33 \sim 47$.

acetals, chair or boat forms. On the basis of the stability of the conformation, the chair form is preferable. To examine the conformation, an MM2 calculation was performed using a model structure for **10** (Fig. 1). The *trans*-decahydronaphthalene moiety was fixed to the chair-chair form, so the stability was predominantly dependent on the cyclic acetal moiety. The calculation for the three possible conformations, that is, chair form

Fig. 1. The model structure and possible conformations of the benzylidene acetal.

Table 4. Structure and in vitro ACAT inhibitory activity.

Comment	Structu	ire	IC ₅₀
Compound	X	Y	(µм)
3	-CH ₃	Н	>10
4	-CH ₃	-CH ₃	>100
5	CH ₂ CH ₃	Н	>100
6	$-CH = CH_2$	Н	>100
7	$-CH(CH_3)_2$	н	>100
8	$-C(CH_3)_3$	н	>100
9	-OCH ₃	Н	>100
10	$-C_6H_5$	Н	>100
11	$-C_6H_5$	$-CH_3$	>100
12	-o-CH ₃ -C ₆ H ₄	H	>100
13	$-m-CH_3-C_6H_4$	Н	>100
14	$-p$ -CH ₃ $-C_6H_4$	Н	>100
15	-o-F-C ₆ H ₄	Н	>100
16	-m-F-C ₆ H ₄	Н	>100
17	-p-F-C ₆ H ₄	Н	> 100
18	- <i>p</i> -OCH ₃ C ₆ H ₄	н	>100
19	$-p-NO_2-C_6H_4$	Н	>100
20	$-(CH_2)_4-$		>100
21	$-(CH_2)_5-$		>100
22	=O		>100
23	-CH ₃	-CH ₃	>100

with an equatorial phenyl ring, chair form with an axial phenyl ring and boat form with an equatorial phenyl ring, was carried out using Chem3D on a Macintosh computer. The structure was fixed to a desired conformation and each local minimum total energy was adopted. The total energy of the chair form with an equatorial phenyl ring was approximately 6 kcal/mol less than that of other two forms. Furthermore, compound **28** was crystallized from ethyl acetate-methanol to carry out an X-ray analysis. The data support the chair form with the phenyl ring at the equatorial position (private data). These results suggest that other acetals take a chair form with the smaller group in the axial position.

Biological activity

The *in vitro* ACAT activity was assayed by our established method using rat liver microsomes⁶⁾. The structures and ACAT inhibitory activity (IC₅₀ value) of 1,11-cyclic acetal derivatives of pyripyropenes are summarized in Tables 4 to 6.

As shown in Table 4, derivatives with a free hydroxy group at the 7-position showed no inhibitory activity.

However, the 7-hydroxyl groups of 4 and 10 were acetylated to give 25 and 26 with potent inhibitory activity (IC₅₀: 1.2 and 0.12 μ M), respectively (Table 5).

Table 5. Structure and in vitro ACAT inhibitory activity.

Com-	\$	Structure		IC ₅₀
pound	X (eq.)	Y (ax.)	R	(μм)
1				0.089
24	$-CH_3$	-CH ₃	nVal	7.1
25	$-CH_3$	$-CH_3$	Ac	1.2
26	$-C_6H_5$	H	Ac	0.12
27	-CH ₃	$-CH_3$	nVal	0.086
28	$-C_6H_5$	Н	nVal	0.0056
29	$-CH_3$	Н	nVal	0.025
30	$-C_6H_5$	$-CH_3$	nVal	0.15
31	-(CH ₂) ₅ -		nVal	0.039
32	$-(CH_2)_4-$		nVal	3.0
33	=O		nVal	2.5
. 34	$-CH_2CH_3$	Н	nVal	0.028
35	$-CH = CH_2$	Н	nVal	0.13
36	$-CH(CH_3)_2$	н	nVal	0.17
37	$-C(CH_3)_3$	Н	nVal	0.21
38	-OCH ₃	Н	nVal	0.091
47			Ac	100
48	—		nVal	80

*n*Val: CO(CH₂)₃CH₃

1155

Fig. 2. The location for eliciting potent ACAT inhibition.

Next, 27, which was *n*-valerylated at the C-7 hydroxy group of 4, showed as potent inhibitory activity as pyripyropene A. It was thus found that the 1- and 11-O-acyl groups can be converted to a 1,11-cyclic acetal group with full retention of activity. And remarkably, *n*-valerylation at the C-7 hydroxy group of 10 gave 28 with an IC_{50} value of 5.6 nm, which is a 16 fold improvement in potency compared to 1.

On the other hand, olefin analog 24 showed only weak inhibitory activity, even though the 7-hydroxyl was *n*-valerylated. Removal of the ketal from 25 and 27 to give, 1,11-dihydroxyl derivatives 47 and 48 resulted in loss of the inhibitory activity. These results are consistent with our previous reports, and suggest that the 1,11-cyclic acetal and 1,11-O-acyl moieties interact at the same site of the enzyme and also that substituent groups at both the 1 and 11 positions are necessary.

Regarding groups at the X and Y positions of 1,11cyclic acetal derivatives, 28 and 29 were much more potent than 27 and 30. The order of ACAT inhibitory activity is H > methyl at the axial Y position, and phenyl > methyl at the equatorial X position. Although the cyclohexylidene derivative (31) showed strong inhibitory activity, the cyclopentylidene (32) and cyclic carbonate derivatives (33) showed less potent inhibitory activity. These result suggest that occupying the X position of the acetal is important for potent inhibitory activity (Fig. 2).

Furthermore, propylidene analog 34 was as potent as ethylidene analog 29, the derivatives with ethylene (35), *i*-propyl (36), *t*-butyl (37) and methoxy (38) at the X position were prepared. These four compounds showed similar IC_{50} values but were less potent than 34 and 29.

As the benzylidene analog (28) showed the most potent inhibitory activity, further modification of the phenyl ring was carry out (Table 6). Among the three methyl benzylidene analogs (39, 40 and 41), the *o*-methyl (39) Table 6. Structure and in vitro ACAT inhibitory activity.

0,0, N
HO
∩ ↓ ↓ ¢ ₀
R O O
\∕ <u>∔</u> `0´

Compound	R	IC ₅₀ (µм)
39	-0-CH3	0.038
40	- <i>m</i> -CH ₃	0.19
41	- <i>p</i> -CH ₃	0.18
42	- <i>o</i> -F	0.085
43	- <i>m</i> -F	0.035
44	<i>-p</i> -F	0.14
45	-p-OCH ₃	0.35
46	- <i>p</i> -NO ₂	5.9

showed the best inhibitory effect, and the *m*-methyl (40) and the *p*-methyl (41) were equivalent. However, among the fluoride benzylidenes (42, 43 and 44), the activity order of the inhibition was *m*-fluoro (43) > *o*-fluoro (42) > *p*-fluoro (44). Incorporation of a methyl or fluoro group in the *p*-position of the phenyl ring decreased the ACAT inhibitory activity (41, 44), and the *p*-methoxy (45) and *p*-nitro (46) benzylidene derivatives were also less potent.

In conclusion, several 7-O-n-valeryl-1,11-cyclic acetal analogs had comparable or improved ACAT inhibitory activity relative to 1. For example, isopropylidene (27), methoxymethylene acetal (38) and o-fluorobenzylidene (42) analogs showed similar inhibitory activity to 1. Moreover, ethylidene (29), cyclohexylidene (31), propylidene (34), o-methylbenzylidene (39), and m-fluorobenzylidene (43) analogs were much more potent than 1. Especially notable is the benzylidene analog (28), which is 16 times more potent than 1.

Experimental

Reagents were obtained from commerical suppliers and were used without purification. Column chromatography was carried out on silica gel (Merck, Kieselgel 60, 230~400 mesh). For preparative TLC (PTLC), Kiesel gel 60 F-254 (Merck) was used. Mass spectra were obtained with a JEOL model DX-300 mass spectrometer. ¹H NMR (270 MHz) and ¹³C NMR (76.5 MHz) spectra were acquired on a JEOL-EX270 spectrophotometer. Chemical shifts are given in ppm with solvent peak (CDCl₃: 7.26 ppm) as the standard, and coupling constants (*J*) are given as Hz. Abbreviations of ¹H NMR signal patterns are following: s=singlet, d=doublet, dd=doublet of doublets, dd=double doublet of doublets, t = triplet, dt = double triplet, q = quartet, m = multiplet, br s = broad singlet. IR spectra were taken with a Horiba model FT-210 spectrophotometer.

General Method of 1,11-Cyclic Acetalization

<u>1,11-Isopropylidene Derivative (4) and its Eliminated</u> Compound (23)

To a solution of 2 (24 mg) in dry DMF (0.5 ml) was added isopropenyl methyl ether (50 μ l) and pyridinium hydrochloride (4 mg), and the solution was stirred at room temperature for 4 days. The reaction mixture was diluted with CH₂Cl₂ and washed with water. The organic layer was dried (Na₂SO₄) and concentrated *in vacuo* to afford a pale yellow solid (26 mg) that was purified by PTLC (0.25 mm, 20 × 20 cm, CH₂Cl₂: MeOH = 10:1) to obtain 4 (16.8 mg, 64%) as colorless solid and 23 (5 mg, 20%) as yellow solid. Analytical data for 23: C₂₈H₃₃O₆N; HR FAB-MS 480.2368 (M+H) Calcd: 480.2386 (for C₂₈H₃₄O₆N); IR (KBr) cm⁻¹ 1710.

Trideacetyl-1,11-cyclic Carbonate Pyripyropene A (22)

To a suspension of 2 (40 mg) in dry THF (2 ml) was added *N*,*N*-carbonyldiimidazole (43 mg), and the mixture was refluxed for 1 hour. The reaction mixture was workup as for 4 to afford 22 (12 mg, 27%) as colorless solid. $C_{26}H_{29}O_8N$; HR FAB-MS 484.1972 (M+H) Calcd: 484.1971 (for $C_{26}H_{30}O_8N$); IR (KBr) cm⁻¹ 1750, 1690.

General Method of 7-O-Acylation

Trideacetyl-1,11-isopropylidene-7-*O*-*n*-valeryl 13-dehydroxy-5,13-dehydro Pyripyropene A (24)

To a solution of **23** (7.2 mg) in dry CH_2Cl_2 (1 ml) was added *n*-valeric anhydride (5 μ l), Et₃N (10 μ l) and DMAP (2 mg), and the solution was stirred at room temperature. The reaction mixture was washed with water and the organic layer dried (Na₂SO₄), concentrated *in vacuo*, and the residure purified by column chromatography (0.5 × 4 cm, CH₂Cl₂: MeOH = 25:1) to give **24** (8.5 mg, 100%) as yellow powder.

Compounds 4 and 10 were acetylated with acetic anhydride to afford 25 and 26, respectively.

Hydrolysis of Isopropylidene Analogs

Trideacetyl-7-*O*-*n*-valeryl Pyripyropene A (48)

Compound 24 (13 mg) was dissolved in 60% aq. AcOH (2 ml) and stirred at room temperature for 4 hours. The reaction mixture was extracted with EtOAc. The organic layer was treated in a similar manner to 24 to obtain 48

(9.9 mg, 82%) as colorless solid. $C_{30}H_{39}O_8N$; HR EI-MS 541.2675 (M+) Calcd: 541.2675; IR (KBr) cm⁻¹ 1730, 1700; ¹H NMR (CDCl₃) δ 0.90 (3H, s), 0.97 (3H, t, J = 7.3 Hz), 1.42 (3H, s), 1.70(3H, s), 2.39 (2H, dt, J = 2.3, 7.6 Hz), 3.42 (H, d, J = 10.2 Hz), 3.67 (1H, d, J = 10.6 Hz), 3.69 (1H, m), 4.99 (1H, d, J = 5.0 Hz), 5.01 (1H, dd, J = 5.3, 11.2 Hz), 6.41 (1H, s), 7.41 (1H, dd, J = 5.6, 8.3 Hz), 8.09 (1H, dt, J = 2.0, 8.3 Hz), 8.69 (1H, dd, J = 1.5, 4.8 Hz), 9.00 (1H, d, J = 1.7).

Analytical data for **47**: $C_{27}H_{33}O_8N$; HR FAB-MS 500.2278 (M+H) Calcd: 500.2284 (for $C_{27}H_{34}O_8N$); IR (KBr) cm⁻¹ 1700.

Acknowledgments

We thank Mr. DA JUNG YAN, Mr. ICHIJI NAMATAME and Dr. NORIKO TABATA for the biological assay, and we are grateful to Prof. TAKAYANAGI for the X-ray crystal analysis. This work was supported in part by a Grant-in-aid for Scientific Research from the Ministry of Education, Science and Culture of Japan, and the Japan Keirin Association. We are grateful to Dr. HESS, Pfizer Inc. (Groton), for kindly providing us with pyripyropene A.

References

- OMURA, S.; H. TOMODA, Y. K. KIM & H. NISHIDA: Pyripyropenes, highly potent inhibitors of acyl-CoA: cholesterol acyltransferase produced by *Aspergillus fumigatus*. J. Antibiotics 46: 1168~1169, 1993
- OBATA, R.; T. SUNAZUKA, L. ZHUORONG, H. TOMODA & S. ŌMURA: Structure-activity relationships of pyripyropenes fungal acyl-CoA: cholesterol acyltransferase inhibitors. J. Antibiotics 48: 749~750, 1995
- OBATA, R.; T. SUNAZUKA, H. TOMODA, Y. HARIGAYA & S. ŌMURA: Chemical modification and structure-activity relationships of pyripyropenes; Potent, bioavailable inhibitor of acyl-CoA: cholesterol acyltransferase. Bioorg. & Med. Chem. Lett. 5: 2683~2688, 1995
- NARASAKA, K.: Trends in synthetic carbohydrate chemistry. In ACS symposium series 386. Ed., D. HORTON et al., p. 290, American Chemical Society, Washington DC, 1989
- 5) LEWBART, M. L. & J. J. SCHNEIDER: Preparation and properties of steroidal 17, 20-acetonides epimeric at C-20.
 I. Derivatives of 5β-pregnan-3α-ol. J. Org. Chem. 34: 3505~3512, 1969
- 6) TOMODA, H.; H. NISHIDA, R. MASUMA, J. CAO, S. OKUDA & S. OMURA: Purpactins, new inhibitors of acyl-CoA: cholesterol acyltransferase produced by *Penicillium purpurogenum*. J. Antibiotics 44: 136~143, 1991